1234567891011121314151617181920 |
- import gradio as gr
- import torch
- from torchvision import transforms
- import requests
- from PIL import Image
- model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
- # Download human-readable labels for ImageNet.
- response = requests.get("https://git.io/JJkYN")
- labels = response.text.split("\n")
- def predict(inp):
- inp = Image.fromarray(inp.astype('uint8'), 'RGB')
- inp = transforms.ToTensor()(inp).unsqueeze(0)
- with torch.no_grad():
- prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
- return {labels[i]: float(prediction[i]) for i in range(1000)}
- inputs = gr.inputs.Image()
- outputs = gr.outputs.Label(num_top_classes=3)
- if __name__=='__main__':
- gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()
|