123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- import numpy as np
- import PIL
- import PIL.Image
- import sys
- import os
- import glob
- import scipy
- import scipy.ndimage
- import dlib
- from drive import open_url
- from pathlib import Path
- import argparse
- from bicubic import BicubicDownSample
- import torchvision
- """
- brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
- author: lzhbrian (https://lzhbrian.me)
- date: 2020.1.5
- note: code is heavily borrowed from
- https://github.com/NVlabs/ffhq-dataset
- http://dlib.net/face_landmark_detection.py.html
- requirements:
- apt install cmake
- conda install Pillow numpy scipy
- pip install dlib
- # download face landmark model from:
- # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
- """
- def get_landmark(filepath,predictor):
- """get landmark with dlib
- :return: np.array shape=(68, 2)
- """
- detector = dlib.get_frontal_face_detector()
- img = dlib.load_rgb_image(filepath)
- dets = detector(img, 1)
- filepath = Path(filepath)
- print(f"{filepath.name}: Number of faces detected: {len(dets)}")
- shapes = [predictor(img, d) for k, d in enumerate(dets)]
- lms = [np.array([[tt.x, tt.y] for tt in shape.parts()]) for shape in shapes]
- return lms
- def align_face(filepath,predictor):
- """
- :param filepath: str
- :return: list of PIL Images
- """
- lms = get_landmark(filepath,predictor)
- imgs = []
- for lm in lms:
- lm_chin = lm[0: 17] # left-right
- lm_eyebrow_left = lm[17: 22] # left-right
- lm_eyebrow_right = lm[22: 27] # left-right
- lm_nose = lm[27: 31] # top-down
- lm_nostrils = lm[31: 36] # top-down
- lm_eye_left = lm[36: 42] # left-clockwise
- lm_eye_right = lm[42: 48] # left-clockwise
- lm_mouth_outer = lm[48: 60] # left-clockwise
- lm_mouth_inner = lm[60: 68] # left-clockwise
- # Calculate auxiliary vectors.
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- eye_avg = (eye_left + eye_right) * 0.5
- eye_to_eye = eye_right - eye_left
- mouth_left = lm_mouth_outer[0]
- mouth_right = lm_mouth_outer[6]
- mouth_avg = (mouth_left + mouth_right) * 0.5
- eye_to_mouth = mouth_avg - eye_avg
- # Choose oriented crop rectangle.
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
- x /= np.hypot(*x)
- x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
- y = np.flipud(x) * [-1, 1]
- c = eye_avg + eye_to_mouth * 0.1
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
- qsize = np.hypot(*x) * 2
- # read image
- img = PIL.Image.open(filepath)
- output_size = 1024
- transform_size = 4096
- enable_padding = True
- # Shrink.
- shrink = int(np.floor(qsize / output_size * 0.5))
- if shrink > 1:
- rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
- img = img.resize(rsize, PIL.Image.ANTIALIAS)
- quad /= shrink
- qsize /= shrink
- # Crop.
- border = max(int(np.rint(qsize * 0.1)), 3)
- crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))))
- crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
- min(crop[3] + border, img.size[1]))
- if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
- img = img.crop(crop)
- quad -= crop[0:2]
- # Pad.
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))))
- pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
- max(pad[3] - img.size[1] + border, 0))
- if enable_padding and max(pad) > border - 4:
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
- img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
- h, w, _ = img.shape
- y, x, _ = np.ogrid[:h, :w, :1]
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
- 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
- blur = qsize * 0.02
- img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
- img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
- img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
- quad += pad[:2]
- # Transform.
- img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(),
- PIL.Image.BILINEAR)
- if output_size < transform_size:
- img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
- # Save aligned image.
- imgs.append(img)
- return imgs
|