123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import torch
- from torch import nn
- from torch.nn import functional as F
- class BicubicDownSample(nn.Module):
- def bicubic_kernel(self, x, a=-0.50):
- """
- This equation is exactly copied from the website below:
- https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic
- """
- abs_x = torch.abs(x)
- if abs_x <= 1.:
- return (a + 2.) * torch.pow(abs_x, 3.) - (a + 3.) * torch.pow(abs_x, 2.) + 1
- elif 1. < abs_x < 2.:
- return a * torch.pow(abs_x, 3) - 5. * a * torch.pow(abs_x, 2.) + 8. * a * abs_x - 4. * a
- else:
- return 0.0
- def __init__(self, factor=4, cuda=True, padding='reflect'):
- super().__init__()
- self.factor = factor
- size = factor * 4
- k = torch.tensor([self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor)
- for i in range(size)], dtype=torch.float32)
- k = k / torch.sum(k)
- # k = torch.einsum('i,j->ij', (k, k))
- k1 = torch.reshape(k, shape=(1, 1, size, 1))
- self.k1 = torch.cat([k1, k1, k1], dim=0)
- k2 = torch.reshape(k, shape=(1, 1, 1, size))
- self.k2 = torch.cat([k2, k2, k2], dim=0)
- self.cuda = '.cuda' if cuda else ''
- self.padding = padding
- for param in self.parameters():
- param.requires_grad = False
- def forward(self, x, nhwc=False, clip_round=False, byte_output=False):
- # x = torch.from_numpy(x).type('torch.FloatTensor')
- filter_height = self.factor * 4
- filter_width = self.factor * 4
- stride = self.factor
- pad_along_height = max(filter_height - stride, 0)
- pad_along_width = max(filter_width - stride, 0)
- filters1 = self.k1.type('torch{}.FloatTensor'.format(self.cuda))
- filters2 = self.k2.type('torch{}.FloatTensor'.format(self.cuda))
- # compute actual padding values for each side
- pad_top = pad_along_height // 2
- pad_bottom = pad_along_height - pad_top
- pad_left = pad_along_width // 2
- pad_right = pad_along_width - pad_left
- # apply mirror padding
- if nhwc:
- x = torch.transpose(torch.transpose(
- x, 2, 3), 1, 2) # NHWC to NCHW
- # downscaling performed by 1-d convolution
- x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding)
- x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3)
- if clip_round:
- x = torch.clamp(torch.round(x), 0.0, 255.)
- x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding)
- x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3)
- if clip_round:
- x = torch.clamp(torch.round(x), 0.0, 255.)
- if nhwc:
- x = torch.transpose(torch.transpose(x, 1, 3), 1, 2)
- if byte_output:
- return x.type('torch.ByteTensor'.format(self.cuda))
- else:
- return x
|