12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- from PULSE import PULSE
- from torch.utils.data import Dataset, DataLoader
- from torch.nn import DataParallel
- from pathlib import Path
- from PIL import Image
- import torchvision
- from math import log10, ceil
- import argparse
- class Images(Dataset):
- def __init__(self, root_dir, duplicates):
- self.root_path = Path(root_dir)
- self.image_list = list(self.root_path.glob("*.png"))
- self.duplicates = duplicates # Number of times to duplicate the image in the dataset to produce multiple HR images
- def __len__(self):
- return self.duplicates*len(self.image_list)
- def __getitem__(self, idx):
- img_path = self.image_list[idx//self.duplicates]
- image = torchvision.transforms.ToTensor()(Image.open(img_path))
- if(self.duplicates == 1):
- return image,img_path.stem
- else:
- return image,img_path.stem+f"_{(idx % self.duplicates)+1}"
- parser = argparse.ArgumentParser(description='PULSE')
- #I/O arguments
- parser.add_argument('-input_dir', type=str, default='input', help='input data directory')
- parser.add_argument('-output_dir', type=str, default='runs', help='output data directory')
- parser.add_argument('-cache_dir', type=str, default='cache', help='cache directory for model weights')
- parser.add_argument('-duplicates', type=int, default=1, help='How many HR images to produce for every image in the input directory')
- parser.add_argument('-batch_size', type=int, default=1, help='Batch size to use during optimization')
- #PULSE arguments
- parser.add_argument('-seed', type=int, help='manual seed to use')
- parser.add_argument('-loss_str', type=str, default="100*L2+0.05*GEOCROSS", help='Loss function to use')
- parser.add_argument('-eps', type=float, default=2e-3, help='Target for downscaling loss (L2)')
- parser.add_argument('-noise_type', type=str, default='trainable', help='zero, fixed, or trainable')
- parser.add_argument('-num_trainable_noise_layers', type=int, default=5, help='Number of noise layers to optimize')
- parser.add_argument('-tile_latent', action='store_true', help='Whether to forcibly tile the same latent 18 times')
- parser.add_argument('-bad_noise_layers', type=str, default="17", help='List of noise layers to zero out to improve image quality')
- parser.add_argument('-opt_name', type=str, default='adam', help='Optimizer to use in projected gradient descent')
- parser.add_argument('-learning_rate', type=float, default=0.4, help='Learning rate to use during optimization')
- parser.add_argument('-steps', type=int, default=100, help='Number of optimization steps')
- parser.add_argument('-lr_schedule', type=str, default='linear1cycledrop', help='fixed, linear1cycledrop, linear1cycle')
- parser.add_argument('-save_intermediate', action='store_true', help='Whether to store and save intermediate HR and LR images during optimization')
- kwargs = vars(parser.parse_args())
- dataset = Images(kwargs["input_dir"], duplicates=kwargs["duplicates"])
- out_path = Path(kwargs["output_dir"])
- out_path.mkdir(parents=True, exist_ok=True)
- dataloader = DataLoader(dataset, batch_size=kwargs["batch_size"])
- model = PULSE(cache_dir=kwargs["cache_dir"])
- model = DataParallel(model)
- toPIL = torchvision.transforms.ToPILImage()
- for ref_im, ref_im_name in dataloader:
- if(kwargs["save_intermediate"]):
- padding = ceil(log10(100))
- for i in range(kwargs["batch_size"]):
- int_path_HR = Path(out_path / ref_im_name[i] / "HR")
- int_path_LR = Path(out_path / ref_im_name[i] / "LR")
- int_path_HR.mkdir(parents=True, exist_ok=True)
- int_path_LR.mkdir(parents=True, exist_ok=True)
- for j,(HR,LR) in enumerate(model(ref_im,**kwargs)):
- for i in range(kwargs["batch_size"]):
- toPIL(HR[i].cpu().detach().clamp(0, 1)).save(
- int_path_HR / f"{ref_im_name[i]}_{j:0{padding}}.png")
- toPIL(LR[i].cpu().detach().clamp(0, 1)).save(
- int_path_LR / f"{ref_im_name[i]}_{j:0{padding}}.png")
- else:
- #out_im = model(ref_im,**kwargs)
- for j,(HR,LR) in enumerate(model(ref_im,**kwargs)):
- for i in range(kwargs["batch_size"]):
- toPIL(HR[i].cpu().detach().clamp(0, 1)).save(
- out_path / f"{ref_im_name[i]}.png")
|