123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 |
- #!/usr/bin/env python
- # -*- encoding: utf-8 -*-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.autograd import Variable
- import numpy as np
- from sqlnet.model.modules.word_embedding import WordEmbedding
- from sqlnet.model.modules.aggregator_predict import AggPredictor
- from sqlnet.model.modules.selection_predict import SelPredictor
- from sqlnet.model.modules.sqlnet_condition_predict import SQLNetCondPredictor
- from sqlnet.model.modules.select_number import SelNumPredictor
- from sqlnet.model.modules.where_relation import WhereRelationPredictor
- # 定义 SQLNet 模型
- class SQLNet(nn.Module):
- def __init__(self, word_emb, N_word, N_h=100, N_depth=2,
- gpu=False, use_ca=True, trainable_emb=False):
- super(SQLNet, self).__init__()
- self.use_ca = use_ca
- self.trainable_emb = trainable_emb
- self.gpu = gpu
- self.N_h = N_h
- self.N_depth = N_depth
- self.max_col_num = 45
- self.max_tok_num = 200
- self.SQL_TOK = ['<UNK>', '<END>', 'WHERE', 'AND', 'OR', '==', '>', '<', '!=', '<BEG>']
- self.COND_OPS = ['>', '<', '==', '!=']
- # Word embedding
- self.embed_layer = WordEmbedding(word_emb, N_word, gpu, self.SQL_TOK, our_model=True, trainable=trainable_emb)
- # Predict the number of selected columns
- self.sel_num = SelNumPredictor(N_word, N_h, N_depth, use_ca=use_ca)
- #Predict which columns are selected
- self.sel_pred = SelPredictor(N_word, N_h, N_depth, self.max_tok_num, use_ca=use_ca)
- #Predict aggregation functions of corresponding selected columns
- self.agg_pred = AggPredictor(N_word, N_h, N_depth, use_ca=use_ca)
- #Predict number of conditions, condition columns, condition operations and condition values
- self.cond_pred = SQLNetCondPredictor(N_word, N_h, N_depth, self.max_col_num, self.max_tok_num, use_ca, gpu)
- # Predict condition relationship, like 'and', 'or'
- self.where_rela_pred = WhereRelationPredictor(N_word, N_h, N_depth, use_ca=use_ca)
- self.CE = nn.CrossEntropyLoss()
- self.softmax = nn.Softmax(dim=-1)
- self.log_softmax = nn.LogSoftmax()
- self.bce_logit = nn.BCEWithLogitsLoss()
- if gpu:
- self.cuda()
- def generate_gt_where_seq_test(self, q, gt_cond_seq):
- ret_seq = []
- for cur_q, ans in zip(q, gt_cond_seq):
- temp_q = u"".join(cur_q)
- cur_q = [u'<BEG>'] + cur_q + [u'<END>']
- record = []
- record_cond = []
- for cond in ans:
- if cond[2] not in temp_q:
- record.append((False, cond[2]))
- else:
- record.append((True, cond[2]))
- for idx, item in enumerate(record):
- temp_ret_seq = []
- if item[0]:
- temp_ret_seq.append(0)
- temp_ret_seq.extend(list(range(temp_q.index(item[1])+1,temp_q.index(item[1])+len(item[1])+1)))
- temp_ret_seq.append(len(cur_q)-1)
- else:
- temp_ret_seq.append([0,len(cur_q)-1])
- record_cond.append(temp_ret_seq)
- ret_seq.append(record_cond)
- return ret_seq
- def forward(self, q, col, col_num, gt_where = None, gt_cond=None, reinforce=False, gt_sel=None, gt_sel_num=None):
- B = len(q)
- sel_num_score = None
- agg_score = None
- sel_score = None
- cond_score = None
- #Predict aggregator
- if self.trainable_emb:
- x_emb_var, x_len = self.agg_embed_layer.gen_x_batch(q, col)
- col_inp_var, col_name_len, col_len = self.agg_embed_layer.gen_col_batch(col)
- max_x_len = max(x_len)
- agg_score = self.agg_pred(x_emb_var, x_len, col_inp_var,
- col_name_len, col_len, col_num, gt_sel=gt_sel)
- x_emb_var, x_len = self.sel_embed_layer.gen_x_batch(q, col)
- col_inp_var, col_name_len, col_len = self.sel_embed_layer.gen_col_batch(col)
- max_x_len = max(x_len)
- sel_score = self.sel_pred(x_emb_var, x_len, col_inp_var,
- col_name_len, col_len, col_num)
- x_emb_var, x_len = self.cond_embed_layer.gen_x_batch(q, col)
- col_inp_var, col_name_len, col_len = self.cond_embed_layer.gen_col_batch(col)
- max_x_len = max(x_len)
- cond_score = self.cond_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_where, gt_cond, reinforce=reinforce)
- where_rela_score = None
- else:
- x_emb_var, x_len = self.embed_layer.gen_x_batch(q, col)
- col_inp_var, col_name_len, col_len = self.embed_layer.gen_col_batch(col)
- sel_num_score = self.sel_num(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num)
- # x_emb_var: embedding of each question
- # x_len: length of each question
- # col_inp_var: embedding of each header
- # col_name_len: length of each header
- # col_len: number of headers in each table, array type
- # col_num: number of headers in each table, list type
- if gt_sel_num:
- pr_sel_num = gt_sel_num
- else:
- pr_sel_num = np.argmax(sel_num_score.data.cpu().numpy(), axis=1)
- sel_score = self.sel_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num)
- if gt_sel:
- pr_sel = gt_sel
- else:
- num = np.argmax(sel_num_score.data.cpu().numpy(), axis=1)
- sel = sel_score.data.cpu().numpy()
- pr_sel = [list(np.argsort(-sel[b])[:num[b]]) for b in range(len(num))]
- agg_score = self.agg_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_sel=pr_sel, gt_sel_num=pr_sel_num)
- where_rela_score = self.where_rela_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num)
- cond_score = self.cond_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_where, gt_cond, reinforce=reinforce)
- return (sel_num_score, sel_score, agg_score, cond_score, where_rela_score)
- def loss(self, score, truth_num, gt_where):
- sel_num_score, sel_score, agg_score, cond_score, where_rela_score = score
- B = len(truth_num)
- loss = 0
- # Evaluate select number
- # sel_num_truth = map(lambda x:x[0], truth_num)
- sel_num_truth = [x[0] for x in truth_num]
- sel_num_truth = torch.from_numpy(np.array(sel_num_truth))
- if self.gpu:
- sel_num_truth = Variable(sel_num_truth.cuda())
- else:
- sel_num_truth = Variable(sel_num_truth)
- loss += self.CE(sel_num_score, sel_num_truth)
- # Evaluate select column
- T = len(sel_score[0])
- truth_prob = np.zeros((B,T), dtype=np.float32)
- for b in range(B):
- truth_prob[b][list(truth_num[b][1])] = 1
- data = torch.from_numpy(truth_prob)
- if self.gpu:
- sel_col_truth_var = Variable(data.cuda())
- else:
- sel_col_truth_var = Variable(data)
- sigm = nn.Sigmoid()
- sel_col_prob = sigm(sel_score)
- bce_loss = -torch.mean(
- 3*(sel_col_truth_var * torch.log(sel_col_prob+1e-10)) +
- (1-sel_col_truth_var) * torch.log(1-sel_col_prob+1e-10)
- )
- loss += bce_loss
- # Evaluate select aggregation
- for b in range(len(truth_num)):
- data = torch.from_numpy(np.array(truth_num[b][2]))
- if self.gpu:
- sel_agg_truth_var = Variable(data.cuda())
- else:
- sel_agg_truth_var = Variable(data)
- sel_agg_pred = agg_score[b, :len(truth_num[b][1])]
- loss += (self.CE(sel_agg_pred, sel_agg_truth_var)) / len(truth_num)
- cond_num_score, cond_col_score, cond_op_score, cond_str_score = cond_score
- # Evaluate the number of conditions
- # cond_num_truth = map(lambda x:x[3], truth_num)
- cond_num_truth = [x[3] for x in truth_num]
- data = torch.from_numpy(np.array(cond_num_truth))
- if self.gpu:
- try:
- cond_num_truth_var = Variable(data.cuda())
- except:
- print ("cond_num_truth_var error")
- print (data)
- exit(0)
- else:
- cond_num_truth_var = Variable(data)
- loss += self.CE(cond_num_score, cond_num_truth_var)
- # Evaluate the columns of conditions
- T = len(cond_col_score[0])
- truth_prob = np.zeros((B, T), dtype=np.float32)
- for b in range(B):
- if len(truth_num[b][4]) > 0:
- truth_prob[b][list(truth_num[b][4])] = 1
- data = torch.from_numpy(truth_prob)
- if self.gpu:
- cond_col_truth_var = Variable(data.cuda())
- else:
- cond_col_truth_var = Variable(data)
- sigm = nn.Sigmoid()
- cond_col_prob = sigm(cond_col_score)
- bce_loss = -torch.mean(
- 3*(cond_col_truth_var * torch.log(cond_col_prob+1e-10)) +
- (1-cond_col_truth_var) * torch.log(1-cond_col_prob+1e-10) )
- loss += bce_loss
- # Evaluate the operator of conditions
- for b in range(len(truth_num)):
- if len(truth_num[b][5]) == 0:
- continue
- data = torch.from_numpy(np.array(truth_num[b][5]))
- if self.gpu:
- cond_op_truth_var = Variable(data.cuda())
- else:
- cond_op_truth_var = Variable(data)
- cond_op_pred = cond_op_score[b, :len(truth_num[b][5])]
- try:
- loss += (self.CE(cond_op_pred, cond_op_truth_var) / len(truth_num))
- except:
- print (cond_op_pred)
- print (cond_op_truth_var)
- exit(0)
- #Evaluate the strings of conditions
- for b in range(len(gt_where)):
- for idx in range(len(gt_where[b])):
- cond_str_truth = gt_where[b][idx]
- if len(cond_str_truth) == 1:
- continue
- data = torch.from_numpy(np.array(cond_str_truth[1:]))
- if self.gpu:
- cond_str_truth_var = Variable(data.cuda())
- else:
- cond_str_truth_var = Variable(data)
- str_end = len(cond_str_truth)-1
- cond_str_pred = cond_str_score[b, idx, :str_end]
- loss += (self.CE(cond_str_pred, cond_str_truth_var) \
- / (len(gt_where) * len(gt_where[b])))
- # Evaluate condition relationship, and / or
- # where_rela_truth = map(lambda x:x[6], truth_num)
- where_rela_truth = [x[6] for x in truth_num]
- data = torch.from_numpy(np.array(where_rela_truth))
- if self.gpu:
- try:
- where_rela_truth = Variable(data.cuda())
- except:
- print ("where_rela_truth error")
- print (data)
- exit(0)
- else:
- where_rela_truth = Variable(data)
- loss += self.CE(where_rela_score, where_rela_truth)
- return loss
- def check_acc(self, vis_info, pred_queries, gt_queries):
- def gen_cond_str(conds, header):
- if len(conds) == 0:
- return 'None'
- cond_str = []
- for cond in conds:
- cond_str.append(header[cond[0]] + ' ' +
- self.COND_OPS[cond[1]] + ' ' + unicode(cond[2]).lower())
- return 'WHERE ' + ' AND '.join(cond_str)
- tot_err = sel_num_err = agg_err = sel_err = 0.0
- cond_num_err = cond_col_err = cond_op_err = cond_val_err = cond_rela_err = 0.0
- for b, (pred_qry, gt_qry) in enumerate(zip(pred_queries, gt_queries)):
- good = True
- sel_pred, agg_pred, where_rela_pred = pred_qry['sel'], pred_qry['agg'], pred_qry['cond_conn_op']
- sel_gt, agg_gt, where_rela_gt = gt_qry['sel'], gt_qry['agg'], gt_qry['cond_conn_op']
- if where_rela_gt != where_rela_pred:
- good = False
- cond_rela_err += 1
- if len(sel_pred) != len(sel_gt):
- good = False
- sel_num_err += 1
- pred_sel_dict = {k:v for k,v in zip(list(sel_pred), list(agg_pred))}
- gt_sel_dict = {k:v for k,v in zip(sel_gt, agg_gt)}
- if set(sel_pred) != set(sel_gt):
- good = False
- sel_err += 1
- agg_pred = [pred_sel_dict[x] for x in sorted(pred_sel_dict.keys())]
- agg_gt = [gt_sel_dict[x] for x in sorted(gt_sel_dict.keys())]
- if agg_pred != agg_gt:
- good = False
- agg_err += 1
- cond_pred = pred_qry['conds']
- cond_gt = gt_qry['conds']
- if len(cond_pred) != len(cond_gt):
- good = False
- cond_num_err += 1
- else:
- cond_op_pred, cond_op_gt = {}, {}
- cond_val_pred, cond_val_gt = {}, {}
- for p, g in zip(cond_pred, cond_gt):
- cond_op_pred[p[0]] = p[1]
- cond_val_pred[p[0]] = p[2]
- cond_op_gt[g[0]] = g[1]
- cond_val_gt[g[0]] = g[2]
- if set(cond_op_pred.keys()) != set(cond_op_gt.keys()):
- cond_col_err += 1
- good=False
- where_op_pred = [cond_op_pred[x] for x in sorted(cond_op_pred.keys())]
- where_op_gt = [cond_op_gt[x] for x in sorted(cond_op_gt.keys())]
- if where_op_pred != where_op_gt:
- cond_op_err += 1
- good=False
- where_val_pred = [cond_val_pred[x] for x in sorted(cond_val_pred.keys())]
- where_val_gt = [cond_val_gt[x] for x in sorted(cond_val_gt.keys())]
- if where_val_pred != where_val_gt:
- cond_val_err += 1
- good=False
- if not good:
- tot_err += 1
- return np.array((sel_num_err, sel_err, agg_err, cond_num_err, cond_col_err, cond_op_err, cond_val_err , cond_rela_err)), tot_err
- def gen_query(self, score, q, col, raw_q, reinforce=False, verbose=False):
- """
- :param score:
- :param q: token-questions
- :param col: token-headers
- :param raw_q: original question sequence
- :return:
- """
- def merge_tokens(tok_list, raw_tok_str):
- tok_str = raw_tok_str# .lower()
- alphabet = 'abcdefghijklmnopqrstuvwxyz0123456789$('
- special = {'-LRB-':'(',
- '-RRB-':')',
- '-LSB-':'[',
- '-RSB-':']',
- '``':'"',
- '\'\'':'"',
- '--':u'\u2013'}
- ret = ''
- double_quote_appear = 0
- for raw_tok in tok_list:
- if not raw_tok:
- continue
- tok = special.get(raw_tok, raw_tok)
- if tok == '"':
- double_quote_appear = 1 - double_quote_appear
- if len(ret) == 0:
- pass
- elif len(ret) > 0 and ret + ' ' + tok in tok_str:
- ret = ret + ' '
- elif len(ret) > 0 and ret + tok in tok_str:
- pass
- elif tok == '"':
- if double_quote_appear:
- ret = ret + ' '
- # elif tok[0] not in alphabet:
- # pass
- elif (ret[-1] not in ['(', '/', u'\u2013', '#', '$', '&']) \
- and (ret[-1] != '"' or not double_quote_appear):
- ret = ret + ' '
- ret = ret + tok
- return ret.strip()
- sel_num_score, sel_score, agg_score, cond_score, where_rela_score = score
- # [64,4,6], [64,14], ..., [64,4]
- sel_num_score = sel_num_score.data.cpu().numpy()
- sel_score = sel_score.data.cpu().numpy()
- agg_score = agg_score.data.cpu().numpy()
- where_rela_score = where_rela_score.data.cpu().numpy()
- ret_queries = []
- B = len(agg_score)
- cond_num_score,cond_col_score,cond_op_score,cond_str_score =\
- [x.data.cpu().numpy() for x in cond_score]
- for b in range(B):
- cur_query = {}
- cur_query['sel'] = []
- cur_query['agg'] = []
- sel_num = np.argmax(sel_num_score[b])
- max_col_idxes = np.argsort(-sel_score[b])[:sel_num]
- # find the most-probable columns' indexes
- max_agg_idxes = np.argsort(-agg_score[b])[:sel_num]
- cur_query['sel'].extend([int(i) for i in max_col_idxes])
- cur_query['agg'].extend([i[0] for i in max_agg_idxes])
- cur_query['cond_conn_op'] = np.argmax(where_rela_score[b])
- cur_query['conds'] = []
- cond_num = np.argmax(cond_num_score[b])
- all_toks = ['<BEG>'] + q[b] + ['<END>']
- max_idxes = np.argsort(-cond_col_score[b])[:cond_num]
- for idx in range(cond_num):
- cur_cond = []
- cur_cond.append(max_idxes[idx]) # where-col
- cur_cond.append(np.argmax(cond_op_score[b][idx])) # where-op
- cur_cond_str_toks = []
- for str_score in cond_str_score[b][idx]:
- str_tok = np.argmax(str_score[:len(all_toks)])
- str_val = all_toks[str_tok]
- if str_val == '<END>':
- break
- cur_cond_str_toks.append(str_val)
- cur_cond.append(merge_tokens(cur_cond_str_toks, raw_q[b]))
- cur_query['conds'].append(cur_cond)
- ret_queries.append(cur_query)
- return ret_queries
|