12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- import json
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.autograd import Variable
- import numpy as np
- from sqlnet.model.modules.net_utils import run_lstm, col_name_encode
- class WhereRelationPredictor(nn.Module):
- def __init__(self, N_word, N_h, N_depth, use_ca):
- super(WhereRelationPredictor, self).__init__()
- self.N_h = N_h
- self.use_ca = use_ca
- self.where_rela_lstm = nn.LSTM(input_size=N_word, hidden_size=int(N_h/2), num_layers=N_depth, batch_first=True, dropout=0.3, bidirectional=True)
- self.where_rela_att = nn.Linear(N_h, 1)
- self.where_rela_col_att = nn.Linear(N_h, 1)
- self.where_rela_out = nn.Sequential(nn.Linear(N_h, N_h), nn.Tanh(), nn.Linear(N_h,3))
- self.softmax = nn.Softmax(dim=-1)
- self.col2hid1 = nn.Linear(N_h, 2 * N_h)
- self.col2hid2 = nn.Linear(N_h, 2 * N_h)
- if self.use_ca:
- print ("Using column attention on where relation predicting")
- def forward(self, x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num):
- B = len(x_len)
- max_x_len = max(x_len)
- # Predict the condition relationship part
- # First use column embeddings to calculate the initial hidden unit
- # Then run the LSTM and predict select number
- e_num_col, col_num = col_name_encode(col_inp_var, col_name_len,
- col_len, self.where_rela_lstm)
- col_att_val = self.where_rela_col_att(e_num_col).squeeze()
- for idx, num in enumerate(col_num):
- if num < max(col_num):
- col_att_val[idx, num:] = -1000000
- num_col_att = self.softmax(col_att_val)
- K_num_col = (e_num_col * num_col_att.unsqueeze(2)).sum(1)
- h1 = self.col2hid1(K_num_col).view(B, 4, self.N_h//2).transpose(0,1).contiguous()
- h2 = self.col2hid2(K_num_col).view(B, 4, self.N_h//2).transpose(0,1).contiguous()
- h_enc, _ = run_lstm(self.where_rela_lstm, x_emb_var, x_len, hidden=(h1, h2))
- att_val = self.where_rela_att(h_enc).squeeze()
- for idx, num in enumerate(x_len):
- if num < max_x_len:
- att_val[idx, num:] = -1000000
- att_val = self.softmax(att_val)
- where_rela_num = (h_enc * att_val.unsqueeze(2).expand_as(h_enc)).sum(1)
- where_rela_score = self.where_rela_out(where_rela_num)
- return where_rela_score
|