#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from sqlnet.model.modules.word_embedding import WordEmbedding from sqlnet.model.modules.aggregator_predict import AggPredictor from sqlnet.model.modules.selection_predict import SelPredictor from sqlnet.model.modules.sqlnet_condition_predict import SQLNetCondPredictor from sqlnet.model.modules.select_number import SelNumPredictor from sqlnet.model.modules.where_relation import WhereRelationPredictor # 定义 SQLNet 模型 class SQLNet(nn.Module): def __init__(self, word_emb, N_word, N_h=100, N_depth=2, gpu=False, use_ca=True, trainable_emb=False): super(SQLNet, self).__init__() self.use_ca = use_ca self.trainable_emb = trainable_emb self.gpu = gpu self.N_h = N_h self.N_depth = N_depth self.max_col_num = 45 self.max_tok_num = 200 self.SQL_TOK = ['', '', 'WHERE', 'AND', 'OR', '==', '>', '<', '!=', ''] self.COND_OPS = ['>', '<', '==', '!='] # Word embedding self.embed_layer = WordEmbedding(word_emb, N_word, gpu, self.SQL_TOK, our_model=True, trainable=trainable_emb) # Predict the number of selected columns self.sel_num = SelNumPredictor(N_word, N_h, N_depth, use_ca=use_ca) #Predict which columns are selected self.sel_pred = SelPredictor(N_word, N_h, N_depth, self.max_tok_num, use_ca=use_ca) #Predict aggregation functions of corresponding selected columns self.agg_pred = AggPredictor(N_word, N_h, N_depth, use_ca=use_ca) #Predict number of conditions, condition columns, condition operations and condition values self.cond_pred = SQLNetCondPredictor(N_word, N_h, N_depth, self.max_col_num, self.max_tok_num, use_ca, gpu) # Predict condition relationship, like 'and', 'or' self.where_rela_pred = WhereRelationPredictor(N_word, N_h, N_depth, use_ca=use_ca) self.CE = nn.CrossEntropyLoss() self.softmax = nn.Softmax(dim=-1) self.log_softmax = nn.LogSoftmax() self.bce_logit = nn.BCEWithLogitsLoss() if gpu: self.cuda() def generate_gt_where_seq_test(self, q, gt_cond_seq): ret_seq = [] for cur_q, ans in zip(q, gt_cond_seq): temp_q = u"".join(cur_q) cur_q = [u''] + cur_q + [u''] record = [] record_cond = [] for cond in ans: if cond[2] not in temp_q: record.append((False, cond[2])) else: record.append((True, cond[2])) for idx, item in enumerate(record): temp_ret_seq = [] if item[0]: temp_ret_seq.append(0) temp_ret_seq.extend(list(range(temp_q.index(item[1])+1,temp_q.index(item[1])+len(item[1])+1))) temp_ret_seq.append(len(cur_q)-1) else: temp_ret_seq.append([0,len(cur_q)-1]) record_cond.append(temp_ret_seq) ret_seq.append(record_cond) return ret_seq def forward(self, q, col, col_num, gt_where = None, gt_cond=None, reinforce=False, gt_sel=None, gt_sel_num=None): B = len(q) sel_num_score = None agg_score = None sel_score = None cond_score = None #Predict aggregator if self.trainable_emb: x_emb_var, x_len = self.agg_embed_layer.gen_x_batch(q, col) col_inp_var, col_name_len, col_len = self.agg_embed_layer.gen_col_batch(col) max_x_len = max(x_len) agg_score = self.agg_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_sel=gt_sel) x_emb_var, x_len = self.sel_embed_layer.gen_x_batch(q, col) col_inp_var, col_name_len, col_len = self.sel_embed_layer.gen_col_batch(col) max_x_len = max(x_len) sel_score = self.sel_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num) x_emb_var, x_len = self.cond_embed_layer.gen_x_batch(q, col) col_inp_var, col_name_len, col_len = self.cond_embed_layer.gen_col_batch(col) max_x_len = max(x_len) cond_score = self.cond_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_where, gt_cond, reinforce=reinforce) where_rela_score = None else: x_emb_var, x_len = self.embed_layer.gen_x_batch(q, col) col_inp_var, col_name_len, col_len = self.embed_layer.gen_col_batch(col) sel_num_score = self.sel_num(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num) # x_emb_var: embedding of each question # x_len: length of each question # col_inp_var: embedding of each header # col_name_len: length of each header # col_len: number of headers in each table, array type # col_num: number of headers in each table, list type if gt_sel_num: pr_sel_num = gt_sel_num else: pr_sel_num = np.argmax(sel_num_score.data.cpu().numpy(), axis=1) sel_score = self.sel_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num) if gt_sel: pr_sel = gt_sel else: num = np.argmax(sel_num_score.data.cpu().numpy(), axis=1) sel = sel_score.data.cpu().numpy() pr_sel = [list(np.argsort(-sel[b])[:num[b]]) for b in range(len(num))] agg_score = self.agg_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_sel=pr_sel, gt_sel_num=pr_sel_num) where_rela_score = self.where_rela_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num) cond_score = self.cond_pred(x_emb_var, x_len, col_inp_var, col_name_len, col_len, col_num, gt_where, gt_cond, reinforce=reinforce) return (sel_num_score, sel_score, agg_score, cond_score, where_rela_score) def loss(self, score, truth_num, gt_where): sel_num_score, sel_score, agg_score, cond_score, where_rela_score = score B = len(truth_num) loss = 0 # Evaluate select number # sel_num_truth = map(lambda x:x[0], truth_num) sel_num_truth = [x[0] for x in truth_num] sel_num_truth = torch.from_numpy(np.array(sel_num_truth)) if self.gpu: sel_num_truth = Variable(sel_num_truth.cuda()) else: sel_num_truth = Variable(sel_num_truth) loss += self.CE(sel_num_score, sel_num_truth) # Evaluate select column T = len(sel_score[0]) truth_prob = np.zeros((B,T), dtype=np.float32) for b in range(B): truth_prob[b][list(truth_num[b][1])] = 1 data = torch.from_numpy(truth_prob) if self.gpu: sel_col_truth_var = Variable(data.cuda()) else: sel_col_truth_var = Variable(data) sigm = nn.Sigmoid() sel_col_prob = sigm(sel_score) bce_loss = -torch.mean( 3*(sel_col_truth_var * torch.log(sel_col_prob+1e-10)) + (1-sel_col_truth_var) * torch.log(1-sel_col_prob+1e-10) ) loss += bce_loss # Evaluate select aggregation for b in range(len(truth_num)): data = torch.from_numpy(np.array(truth_num[b][2])) if self.gpu: sel_agg_truth_var = Variable(data.cuda()) else: sel_agg_truth_var = Variable(data) sel_agg_pred = agg_score[b, :len(truth_num[b][1])] loss += (self.CE(sel_agg_pred, sel_agg_truth_var)) / len(truth_num) cond_num_score, cond_col_score, cond_op_score, cond_str_score = cond_score # Evaluate the number of conditions # cond_num_truth = map(lambda x:x[3], truth_num) cond_num_truth = [x[3] for x in truth_num] data = torch.from_numpy(np.array(cond_num_truth)) if self.gpu: try: cond_num_truth_var = Variable(data.cuda()) except: print ("cond_num_truth_var error") print (data) exit(0) else: cond_num_truth_var = Variable(data) loss += self.CE(cond_num_score, cond_num_truth_var) # Evaluate the columns of conditions T = len(cond_col_score[0]) truth_prob = np.zeros((B, T), dtype=np.float32) for b in range(B): if len(truth_num[b][4]) > 0: truth_prob[b][list(truth_num[b][4])] = 1 data = torch.from_numpy(truth_prob) if self.gpu: cond_col_truth_var = Variable(data.cuda()) else: cond_col_truth_var = Variable(data) sigm = nn.Sigmoid() cond_col_prob = sigm(cond_col_score) bce_loss = -torch.mean( 3*(cond_col_truth_var * torch.log(cond_col_prob+1e-10)) + (1-cond_col_truth_var) * torch.log(1-cond_col_prob+1e-10) ) loss += bce_loss # Evaluate the operator of conditions for b in range(len(truth_num)): if len(truth_num[b][5]) == 0: continue data = torch.from_numpy(np.array(truth_num[b][5])) if self.gpu: cond_op_truth_var = Variable(data.cuda()) else: cond_op_truth_var = Variable(data) cond_op_pred = cond_op_score[b, :len(truth_num[b][5])] try: loss += (self.CE(cond_op_pred, cond_op_truth_var) / len(truth_num)) except: print (cond_op_pred) print (cond_op_truth_var) exit(0) #Evaluate the strings of conditions for b in range(len(gt_where)): for idx in range(len(gt_where[b])): cond_str_truth = gt_where[b][idx] if len(cond_str_truth) == 1: continue data = torch.from_numpy(np.array(cond_str_truth[1:])) if self.gpu: cond_str_truth_var = Variable(data.cuda()) else: cond_str_truth_var = Variable(data) str_end = len(cond_str_truth)-1 cond_str_pred = cond_str_score[b, idx, :str_end] loss += (self.CE(cond_str_pred, cond_str_truth_var) \ / (len(gt_where) * len(gt_where[b]))) # Evaluate condition relationship, and / or # where_rela_truth = map(lambda x:x[6], truth_num) where_rela_truth = [x[6] for x in truth_num] data = torch.from_numpy(np.array(where_rela_truth)) if self.gpu: try: where_rela_truth = Variable(data.cuda()) except: print ("where_rela_truth error") print (data) exit(0) else: where_rela_truth = Variable(data) loss += self.CE(where_rela_score, where_rela_truth) return loss def check_acc(self, vis_info, pred_queries, gt_queries): def gen_cond_str(conds, header): if len(conds) == 0: return 'None' cond_str = [] for cond in conds: cond_str.append(header[cond[0]] + ' ' + self.COND_OPS[cond[1]] + ' ' + unicode(cond[2]).lower()) return 'WHERE ' + ' AND '.join(cond_str) tot_err = sel_num_err = agg_err = sel_err = 0.0 cond_num_err = cond_col_err = cond_op_err = cond_val_err = cond_rela_err = 0.0 for b, (pred_qry, gt_qry) in enumerate(zip(pred_queries, gt_queries)): good = True sel_pred, agg_pred, where_rela_pred = pred_qry['sel'], pred_qry['agg'], pred_qry['cond_conn_op'] sel_gt, agg_gt, where_rela_gt = gt_qry['sel'], gt_qry['agg'], gt_qry['cond_conn_op'] if where_rela_gt != where_rela_pred: good = False cond_rela_err += 1 if len(sel_pred) != len(sel_gt): good = False sel_num_err += 1 pred_sel_dict = {k:v for k,v in zip(list(sel_pred), list(agg_pred))} gt_sel_dict = {k:v for k,v in zip(sel_gt, agg_gt)} if set(sel_pred) != set(sel_gt): good = False sel_err += 1 agg_pred = [pred_sel_dict[x] for x in sorted(pred_sel_dict.keys())] agg_gt = [gt_sel_dict[x] for x in sorted(gt_sel_dict.keys())] if agg_pred != agg_gt: good = False agg_err += 1 cond_pred = pred_qry['conds'] cond_gt = gt_qry['conds'] if len(cond_pred) != len(cond_gt): good = False cond_num_err += 1 else: cond_op_pred, cond_op_gt = {}, {} cond_val_pred, cond_val_gt = {}, {} for p, g in zip(cond_pred, cond_gt): cond_op_pred[p[0]] = p[1] cond_val_pred[p[0]] = p[2] cond_op_gt[g[0]] = g[1] cond_val_gt[g[0]] = g[2] if set(cond_op_pred.keys()) != set(cond_op_gt.keys()): cond_col_err += 1 good=False where_op_pred = [cond_op_pred[x] for x in sorted(cond_op_pred.keys())] where_op_gt = [cond_op_gt[x] for x in sorted(cond_op_gt.keys())] if where_op_pred != where_op_gt: cond_op_err += 1 good=False where_val_pred = [cond_val_pred[x] for x in sorted(cond_val_pred.keys())] where_val_gt = [cond_val_gt[x] for x in sorted(cond_val_gt.keys())] if where_val_pred != where_val_gt: cond_val_err += 1 good=False if not good: tot_err += 1 return np.array((sel_num_err, sel_err, agg_err, cond_num_err, cond_col_err, cond_op_err, cond_val_err , cond_rela_err)), tot_err def gen_query(self, score, q, col, raw_q, reinforce=False, verbose=False): """ :param score: :param q: token-questions :param col: token-headers :param raw_q: original question sequence :return: """ def merge_tokens(tok_list, raw_tok_str): tok_str = raw_tok_str# .lower() alphabet = 'abcdefghijklmnopqrstuvwxyz0123456789$(' special = {'-LRB-':'(', '-RRB-':')', '-LSB-':'[', '-RSB-':']', '``':'"', '\'\'':'"', '--':u'\u2013'} ret = '' double_quote_appear = 0 for raw_tok in tok_list: if not raw_tok: continue tok = special.get(raw_tok, raw_tok) if tok == '"': double_quote_appear = 1 - double_quote_appear if len(ret) == 0: pass elif len(ret) > 0 and ret + ' ' + tok in tok_str: ret = ret + ' ' elif len(ret) > 0 and ret + tok in tok_str: pass elif tok == '"': if double_quote_appear: ret = ret + ' ' # elif tok[0] not in alphabet: # pass elif (ret[-1] not in ['(', '/', u'\u2013', '#', '$', '&']) \ and (ret[-1] != '"' or not double_quote_appear): ret = ret + ' ' ret = ret + tok return ret.strip() sel_num_score, sel_score, agg_score, cond_score, where_rela_score = score # [64,4,6], [64,14], ..., [64,4] sel_num_score = sel_num_score.data.cpu().numpy() sel_score = sel_score.data.cpu().numpy() agg_score = agg_score.data.cpu().numpy() where_rela_score = where_rela_score.data.cpu().numpy() ret_queries = [] B = len(agg_score) cond_num_score,cond_col_score,cond_op_score,cond_str_score =\ [x.data.cpu().numpy() for x in cond_score] for b in range(B): cur_query = {} cur_query['sel'] = [] cur_query['agg'] = [] sel_num = np.argmax(sel_num_score[b]) max_col_idxes = np.argsort(-sel_score[b])[:sel_num] # find the most-probable columns' indexes max_agg_idxes = np.argsort(-agg_score[b])[:sel_num] cur_query['sel'].extend([int(i) for i in max_col_idxes]) cur_query['agg'].extend([i[0] for i in max_agg_idxes]) cur_query['cond_conn_op'] = np.argmax(where_rela_score[b]) cur_query['conds'] = [] cond_num = np.argmax(cond_num_score[b]) all_toks = [''] + q[b] + [''] max_idxes = np.argsort(-cond_col_score[b])[:cond_num] for idx in range(cond_num): cur_cond = [] cur_cond.append(max_idxes[idx]) # where-col cur_cond.append(np.argmax(cond_op_score[b][idx])) # where-op cur_cond_str_toks = [] for str_score in cond_str_score[b][idx]: str_tok = np.argmax(str_score[:len(all_toks)]) str_val = all_toks[str_tok] if str_val == '': break cur_cond_str_toks.append(str_val) cur_cond.append(merge_tokens(cur_cond_str_toks, raw_q[b])) cur_query['conds'].append(cur_cond) ret_queries.append(cur_query) return ret_queries