123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- # Copyright 2015 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Functions for downloading and reading MNIST data."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- #from mnist_demo import *
- import os
- import gzip
- import os
- import tempfile
- import numpy
- from six.moves import urllib
- from six.moves import xrange # pylint: disable=redefined-builtin
- import tensorflow as tf
- SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
- def maybe_download(filename, work_directory):
- """Download the data from Yann's website, unless it's already here."""
- filepath = os.path.join(work_directory, filename)
- print(filepath)
- # if not tf.gfile.Exists(filepath):
- # with tempfile.NamedTemporaryFile() as tmpfile:
- # temp_file_name = tmpfile.name
- # urllib.request.urlretrieve(SOURCE_URL + filename, temp_file_name)
- # tf.gfile.Copy(temp_file_name, filepath)
- # with tf.gfile.GFile(filepath) as f:
- # size = f.Size()
- # print('Successfully downloaded', filename, size, 'bytes.')
- return filepath
- def _read32(bytestream):
- dt = numpy.dtype(numpy.uint32).newbyteorder('>')
- return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
- def extract_images(filename):
- """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
- print('Extracting', filename)
- with open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
- magic = _read32(bytestream)
- if magic != 2051:
- raise ValueError(
- 'Invalid magic number %d in MNIST image file: %s' %
- (magic, filename))
- num_images = _read32(bytestream)
- rows = _read32(bytestream)
- cols = _read32(bytestream)
- buf = bytestream.read(rows * cols * num_images)
- data = numpy.frombuffer(buf, dtype=numpy.uint8)
- data = data.reshape(num_images, rows, cols, 1)
- return data
- def dense_to_one_hot(labels_dense, num_classes):
- #print(labels_dense.shape)
- #print(labels_dense)
- """Convert class labels from scalars to one-hot vectors."""
- num_labels = labels_dense.shape[0]
- #print(num_labels)
- index_offset = numpy.arange(num_labels) * num_classes
- #print(index_offset)
- labels_one_hot = numpy.zeros((num_labels, num_classes))
- #print(labels_one_hot.shape)
- #print(labels_one_hot)
- #print(labels_dense.shape)
- labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
- #print(labels_one_hot.shape)
- return labels_one_hot
- def extract_labels(filename, one_hot=False, num_classes=10):
- """Extract the labels into a 1D uint8 numpy array [index]."""
- print('Extracting', filename)
- # with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
- with open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
- magic = _read32(bytestream)
- if magic != 2049:
- raise ValueError(
- 'Invalid magic number %d in MNIST label file: %s' %
- (magic, filename))
- num_items = _read32(bytestream)
- buf = bytestream.read(num_items)
- labels = numpy.frombuffer(buf, dtype=numpy.uint8)
- if one_hot:
- return dense_to_one_hot(labels, num_classes)
- return labels
- class DataSet(object):
- def __init__(self, images, labels, fake_data=False, one_hot=False,
- dtype=tf.float32):
- """Construct a DataSet.
- one_hot arg is used only if fake_data is true. `dtype` can be either
- `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
- `[0, 1]`.
- """
- dtype = tf.as_dtype(dtype).base_dtype
- if dtype not in (tf.uint8, tf.float32):
- raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
- dtype)
- if fake_data:
- self._num_examples = 10000
- self.one_hot = one_hot
- else:
- assert images.shape[0] == labels.shape[0], (
- 'images.shape: %s labels.shape: %s' % (images.shape,
- labels.shape))
- self._num_examples = images.shape[0]
- # Convert shape from [num examples, rows, columns, depth]
- # to [num examples, rows*columns] (assuming depth == 1)
- assert images.shape[3] == 1
- images = images.reshape(images.shape[0],
- images.shape[1] * images.shape[2])
- if dtype == tf.float32:
- # Convert from [0, 255] -> [0.0, 1.0].
- images = images.astype(numpy.float32)
- images = numpy.multiply(images, 1.0 / 255.0)
- self._images = images
- self._labels = labels
- self._epochs_completed = 0
- self._index_in_epoch = 0
- @property
- def images(self):
- return self._images
- @property
- def labels(self):
- return self._labels
- @property
- def num_examples(self):
- return self._num_examples
- @property
- def epochs_completed(self):
- return self._epochs_completed
- def next_batch(self, batch_size, fake_data=False):
- """Return the next `batch_size` examples from this data set."""
- if fake_data:
- fake_image = [1] * 784
- if self.one_hot:
- fake_label = [1] + [0] * 9
- else:
- fake_label = 0
- return [fake_image for _ in xrange(batch_size)], [
- fake_label for _ in xrange(batch_size)]
- start = self._index_in_epoch
- self._index_in_epoch += batch_size
- if self._index_in_epoch > self._num_examples:
- # Finished epoch
- self._epochs_completed += 1
- # Shuffle the data
- perm = numpy.arange(self._num_examples)
- numpy.random.shuffle(perm)
- self._images = self._images[perm]
- self._labels = self._labels[perm]
- # Start next epoch
- start = 0
- self._index_in_epoch = batch_size
- assert batch_size <= self._num_examples
- end = self._index_in_epoch
- # print(self._images[start])
- return self._images[start:end], self._labels[start:end]
- def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
- class DataSets(object):
- pass
- data_sets = DataSets()
- if fake_data:
- def fake():
- return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
- data_sets.train = fake()
- data_sets.validation = fake()
- data_sets.test = fake()
- return data_sets
- TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
- TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
- TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
- TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
- VALIDATION_SIZE = 5000
- local_file = maybe_download(TRAIN_IMAGES, train_dir)
- train_images = extract_images(local_file)
- local_file = maybe_download(TRAIN_LABELS, train_dir)
- train_labels = extract_labels(local_file, one_hot=one_hot)
- local_file = maybe_download(TEST_IMAGES, train_dir)
- test_images = extract_images(local_file)
- local_file = maybe_download(TEST_LABELS, train_dir)
- test_labels = extract_labels(local_file, one_hot=one_hot)
- validation_images = train_images[:VALIDATION_SIZE]
- validation_labels = train_labels[:VALIDATION_SIZE]
-
- train_images = train_images[VALIDATION_SIZE:]
- train_labels = train_labels[VALIDATION_SIZE:]
- data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
- data_sets.validation = DataSet(validation_images, validation_labels,dtype=dtype)
- test_images = test_images[VALIDATION_SIZE:]
- test_labels = test_labels[VALIDATION_SIZE:]
- data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
- data_sets.validation = DataSet(validation_images, validation_labels,dtype=dtype)
- #print(test_images[3][15]);
- #print(len(test_images[0][0]));
- # print (len(test_images))
- # if(files==null) return
- # test_images1,test_labels1=GetImage(files)
- # # print(((test_images1[0])))
- # # test_images=array(test_images1)
- # # test_labels=array(test_labels1)
- # # print (test_labels[0])
- # # test_images_demo=empty(1)
- # # test_images_demo.append(test_images1)
- # # print(shape((test_images1)))
- # data_sets.test = DataSet(test_images1, test_labels1, dtype=dtype)
- return data_sets
|