123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # coding: utf-8
- # In[2]:
- from nt import chdir
- mdir="C:/Users/dell/workspace/firstPython/mnist"
- chdir(mdir)
- import tensorflow as tf
- import numpy as np
- import input_data
- mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
- # In[3]:
- #启动.Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。
- sess = tf.InteractiveSession()
- #TensorBoard读取的log文件
- file_writer = tf.summary.FileWriter('%s%s' % (mdir,'/mnist_logs'), sess.graph)
- #占位符
- x = tf.placeholder("float", shape=[None, 784])
- y_ = tf.placeholder("float", shape=[None, 10])
- #变量
- W = tf.Variable(tf.zeros([784,10]))
- b = tf.Variable(tf.zeros([10]))
- #run
- sess.run(tf.initialize_all_variables())
- #类别预测与损失函数
- y = tf.nn.softmax(tf.matmul(x,W) + b)
- cross_entropy = -tf.reduce_sum(y_*tf.log(y))
- #训练模型
- train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
- for i in range(1000):
- batch = mnist.train.next_batch(50)
- train_step.run(feed_dict={x: batch[0], y_: batch[1]})
- #评估模型
- correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
- # In[4]:
- #权重初始化
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- #卷积和池化
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
- strides=[1, 2, 2, 1], padding='SAME')
- #第一层卷积
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- x_image = tf.reshape(x, [-1,28,28,1])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
- #第二层卷积
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
- #密集连接层
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- #Dropout
- # In[5]:
- keep_prob = tf.placeholder("float")
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
- #输出层
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
- #训练和评估模型
- cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- sess.run(tf.initialize_all_variables())
- # In[8]:
- #for i in range(20000):
- for i in range(100):
- batch = mnist.train.next_batch(50)
- if i%100 == 0:
- train_accuracy = accuracy.eval(feed_dict={
- x:batch[0], y_: batch[1], keep_prob: 1.0})
- # print("step %d, training accuracy %g"%(i, train_accuracy))
- train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
- # In[7]:
- print("test accuracy %g"%accuracy.eval(feed_dict={
- x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
|