# coding: utf-8 # In[2]: from nt import chdir mdir="C:/Users/dell/workspace/firstPython/mnist" chdir(mdir) import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # In[3]: #启动.Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。 sess = tf.InteractiveSession() #TensorBoard读取的log文件 file_writer = tf.summary.FileWriter('%s%s' % (mdir,'/mnist_logs'), sess.graph) #占位符 x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) #变量 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) #run sess.run(tf.initialize_all_variables()) #类别预测与损失函数 y = tf.nn.softmax(tf.matmul(x,W) + b) cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #训练模型 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) for i in range(1000): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) #评估模型 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) # In[4]: #权重初始化 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #卷积和池化 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #第一层卷积 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) #第二层卷积 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #密集连接层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #Dropout # In[5]: keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #输出层 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #训练和评估模型 cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) # In[8]: #for i in range(20000): for i in range(100): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) # print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # In[7]: print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))