123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- '''
- 对app表处理,计算平均CPU,mem,在app表添加两列保存其值
- @Auther :liuyuqi.gov@msn.cn
- @Time :2018/7/7 3:14
- @File :app.py
- '''
- import matplotlib
- matplotlib.use('Agg')
- # 数据预览
- import pandas as pd
- from configparser import ConfigParser
- # step1: 数据参数初始化
- cf = ConfigParser()
- config_path = "../conf/config.ini"
- section_name = "data_file_name"
- cf.read(config_path)
- app_interference = cf.get(section_name, "app_interference")
- app_resources = cf.get(section_name, "app_resources")
- instance_deploy = cf.get(section_name, "instance_deploy")
- machine_resources = cf.get(section_name, "machine_resources")
- # app表
- df1 = pd.read_csv(app_resources, header=None,
- names=list(["appid", "cpu", "mem", "disk", "P", "M", "PM"]), encoding="utf-8")
- # 新添加两列
- df1["cpu_avg"] = None
- df1["mem_avg"] = None
- # expand=True表示
- tmp = df1["cpu"].str.split('|', expand=True).astype('float')
- print(type(tmp))
- print(tmp.index)
- print(type(tmp[1]))
- exit(1)
- # [9338 rows x 98 columns]
- df1["cpu_avg"] = tmp.T.mean().T # 转置,求均值,再转置回来,这样求得一行的均值。
- tmp = df1["mem"].str.split('|', expand=True).astype('float')
- df1["mem_avg"] = tmp.T.mean().T # 转置,求均值,再转置回来,这样求得一行的均值。
- print(df1.head())
- print("总共应用:", df1["appid"].unique().shape)
- df1.pop("cpu")
- df1.pop("mem")
- df1.to_csv("../data/app.csv")
|