123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- '''
- @Auther :liuyuqi.gov@msn.cn
- @Time :2018/7/5 3:08
- @File :test_pandas.py
- '''
- import pandas as pd
- def t1():
- a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
- df = pd.DataFrame(a, columns=list("ABC"))
- print(df.dtypes)
- print(df)
- def t2():
- obj = pd.Series(list('cadaabbcc'))
- uniques = obj.unique()
- print(obj.dtypes)
- print(uniques.shape)
- def t3():
- df = pd.DataFrame()
- df2 = pd.read_csv()
- df3 = pd.Series()
- pd.concat()
- pd.to_datetime()
- pd.merge()
- pd.Timestamp
- def t4():
- df = pd.DataFrame(columns=list("AB"), data=[[1, 2], [3, 4]])
- df["C"] = None
- df["C"][1] = 2
- print(df)
- def t5():
- ser1 = pd.Series([1, 2, 3, 4])
- ser2 = pd.Series(range(4), index=["a", "b", "c", "d"])
- sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
- ser3 = pd.Series(sdata)
- # print(ser1)
- print(ser2)
- # 访问Series
- ser2["a"]
- # 所有索引
- ser2.index
- # 所有值
- ser2.values
- t5()
|