sort_by_disk.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. '''
  4. 按照磁盘占用率从大到小装箱,即按照磁盘先用完为止进行分配实例到主机。
  5. @Auther :liuyuqi.gov@msn.cn
  6. @Time :2018/7/7 0:43
  7. @File :sort_by_disk.py
  8. '''
  9. import matplotlib
  10. matplotlib.use('Agg')
  11. import pandas as pd
  12. import matplotlib.pyplot as plt
  13. from configparser import ConfigParser
  14. cf = ConfigParser()
  15. config_path = "../conf/config.ini"
  16. section_name = "data_file_name"
  17. cf.read(config_path)
  18. app_interference = cf.get(section_name, "app_interference")
  19. app_resources = cf.get(section_name, "app_resources")
  20. instance_deploy = cf.get(section_name, "instance_deploy")
  21. machine_resources = cf.get(section_name, "machine_resources")
  22. app = cf.get(section_name, "app")
  23. instance = cf.get(section_name, "instance")
  24. # app
  25. df1 = pd.read_csv(app_resources, encoding="utf-8")
  26. # instance
  27. df3 = pd.read_csv(instance_deploy, header=None,
  28. names=list(["instanceid", "appid", "machineid"]))
  29. # machine
  30. # 其实就两类,所以就不需要导入数据了。
  31. # 限制表
  32. df4 = pd.read_csv(app_interference, header=None,
  33. names=list(["appid1", "appid2", "max_interference"]), encoding="utf-8")
  34. result = pd.DataFrame(columns=list(["instanceid"], "machineid"))
  35. tem_disk = tem_mem = tem_cpu = tem_P = tem_M = tem_PM = 0
  36. tmp_stand_cpu1 = 32
  37. tmp_stand_mem1 = 64
  38. tmp_stand_disk1 = 600
  39. tmp_stand_cpu2 = 92
  40. tmp_stand_mem2 = 288
  41. tmp_stand_disk2 = 600
  42. tmp_stand_P = 7
  43. tmp_stand_M1 = 3
  44. tmp_stand_M2 = 7
  45. tmp_stand_PM1 = 7
  46. tmp_stand_PM2 = 9
  47. machine_count = 0 # 3000小机器,3000大机器。所以在小机器用完换大机器
  48. j = 1 # j表示主机序号,从1-3000,3001到6000
  49. is_deploy = False # 主机j是否部署了instance
  50. deploy_list = list() # 主机j部署的instanceid实例
  51. # 各app之间的限制
  52. def restrictApp(instance, deploy_list):
  53. # df4["appid1"]
  54. # df4["appid2"]
  55. return True
  56. # 执行部署方案
  57. def deplay():
  58. mlength = df3["instanceid"].size()
  59. while mlength > 0:
  60. deployInstance(mlength)
  61. result.to_csv("../submit/xx.csv")
  62. def deployInstance(mlength):
  63. for i in range(0, mlength):
  64. tem_disk = tem_disk + df3["disk"][i] # 当前磁盘消耗
  65. tem_mem = tem_mem + df3["mem"][i]
  66. tem_cpu = tem_cpu + df3["cpu"][i]
  67. tem_P = tem_P + df3["P"][i]
  68. tem_M = tem_M + df3["M"][i]
  69. tem_PM = tem_PM + df3["PM"][i]
  70. if tem_disk < tmp_stand_disk1: # 磁盘够
  71. # if 满足限制表条件,则把当前实例部署到这台主机上。
  72. if is_deploy == True:
  73. if restrictApp(instance=df3["instanceid"], deploy_list=deploy_list):
  74. if tem_mem < tmp_stand_mem1: # 内存够
  75. if tem_cpu < tmp_stand_cpu1: # CPU够
  76. if tem_M < tmp_stand_M1:
  77. if tem_P < tmp_stand_P:
  78. if tem_PM < tmp_stand_PM1:
  79. result["machine"][i] = "machine_" + i
  80. else:
  81. # 主机j没有部署实例,则先部署一个
  82. result["machine"][i] = "machine_" + i
  83. is_deploy = True
  84. # 整个instace都遍历了,第j主机无法再放入一个,所以添加j+1主机
  85. j = j + 1
  86. def plotGroup(): # df3新建一列
  87. df3["disk"] = None
  88. for i in range(0, 68219):
  89. df3["disk"][i] = lambda x: x[i], df1["disk"]
  90. # instance分类统计
  91. group1 = df3.groupby("appid").count()
  92. print(type(group1))
  93. print(group1["instanceid"].sort_values(ascending=False))
  94. plt.plot(group1["instanceid"].sort_values(ascending=False))
  95. plt.savefig("../submit/group1.jpg")
  96. # 找到每个instance消耗的disk
  97. # df3["disk"] =