|
@@ -31,7 +31,7 @@ machine_resources = cf.get(section_name, "machine_resources")
|
|
def for_df1():
|
|
def for_df1():
|
|
# 应用app表: 应用id/cpu占用量/内存占用/磁盘占用/P/M/PM等指标
|
|
# 应用app表: 应用id/cpu占用量/内存占用/磁盘占用/P/M/PM等指标
|
|
df1 = pd.read_csv(app_resources, header=None,
|
|
df1 = pd.read_csv(app_resources, header=None,
|
|
- names=list(["appid", "cpu", "mem", "disk", "P", "M", "PM"]))
|
|
|
|
|
|
+ names=list(["appid", "cpu", "mem", "disk", "P", "M", "PM"]), encoding="utf-8")
|
|
print(df1.dtypes)
|
|
print(df1.dtypes)
|
|
# appid object
|
|
# appid object
|
|
# cpu object
|
|
# cpu object
|
|
@@ -59,7 +59,7 @@ def for_df1():
|
|
def for_df2():
|
|
def for_df2():
|
|
# 主机表 :宿主机id/ cpu规格/mem规格/disk规格/P上限/M上限/PM上限
|
|
# 主机表 :宿主机id/ cpu规格/mem规格/disk规格/P上限/M上限/PM上限
|
|
df2 = pd.read_csv(machine_resources, header=None, names=list(
|
|
df2 = pd.read_csv(machine_resources, header=None, names=list(
|
|
- ["machineid", "cpu", "mem", "disk", "P", "M", "PM"]))
|
|
|
|
|
|
+ ["machineid", "cpu", "mem", "disk", "P", "M", "PM"]), encoding="utf-8")
|
|
# df2 = pd.DataFrame(pd.read_csv("../data/scheduling_preliminary_machine_resources_20180606.csv", header=None),columns=list(["machineid", "cpu", "mem", "disk", "P", "M", "PM"]))
|
|
# df2 = pd.DataFrame(pd.read_csv("../data/scheduling_preliminary_machine_resources_20180606.csv", header=None),columns=list(["machineid", "cpu", "mem", "disk", "P", "M", "PM"]))
|
|
print(df2.dtypes)
|
|
print(df2.dtypes)
|
|
# machineid object
|
|
# machineid object
|
|
@@ -84,7 +84,7 @@ def for_df2():
|
|
def for_df3():
|
|
def for_df3():
|
|
# 主机machine/实例instance/应用app 关系表
|
|
# 主机machine/实例instance/应用app 关系表
|
|
df3 = pd.read_csv(instance_deploy, header=None,
|
|
df3 = pd.read_csv(instance_deploy, header=None,
|
|
- names=list(["instanceid", "appid", "machineid"]))
|
|
|
|
|
|
+ names=list(["instanceid", "appid", "machineid"]), encoding="utf-8")
|
|
print(df3.dtypes)
|
|
print(df3.dtypes)
|
|
print("df数据大小:", df3.shape)
|
|
print("df数据大小:", df3.shape)
|
|
print("instance唯一数量:", df3["instanceid"].unique().shape)
|
|
print("instance唯一数量:", df3["instanceid"].unique().shape)
|
|
@@ -95,7 +95,7 @@ def for_df3():
|
|
def for_df4():
|
|
def for_df4():
|
|
# 主机和实例表。部署appid1的insterference最多可以部署n个appid2
|
|
# 主机和实例表。部署appid1的insterference最多可以部署n个appid2
|
|
df = pd.read_csv(app_interference, header=None,
|
|
df = pd.read_csv(app_interference, header=None,
|
|
- names=list(["appid1", "appid2", "max_interference"]))
|
|
|
|
|
|
+ names=list(["appid1", "appid2", "max_interference"]), encoding="utf-8")
|
|
# 查看数据类型
|
|
# 查看数据类型
|
|
# print(df.dtypes)
|
|
# print(df.dtypes)
|
|
print("df数据大小:", df.shape)
|
|
print("df数据大小:", df.shape)
|